Knowledge discovery for geographical cellular automata
نویسندگان
چکیده
This paper proposes a new method for geographical simulation by applying data mining techniques to cellular automata. CA has strong capabilities in simulating complex systems. The core of CA is how to define transition rules. There are no good methods for defining these transition rules. They are usually defined by using heuristic methods and thus subject to uncertainties. Mathematical equations are used to represent transition rules implicitly and have limitations in capturing complex relationships. This paper demonstrates that the explicit transition rules of CA can be automatically reconstructed through the rule induction procedure of data mining. The proposed method can reduce the influences of individual knowledge and preferences in defining transition rules and generate more reliable simulation results. It can efficiently discover knowledge from a vast volume of spatial data.
منابع مشابه
An Ant-Colony Optimization Clustering Model for Cellular Automata Routing in Wireless Sensor Networks
High efficient routing is an important issue for the design of wireless sensor network (WSN) protocols to meet the severe hardware and resource constraints. This paper presents an inclusive evolutionary reinforcement method. The proposed approach is a combination of Cellular Automata (CA) and Ant Colony Optimization (ACO) techniques in order to create collision-free trajectories for every agent...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملImproved Frog Leaping Algorithm Using Cellular Learning Automata
In this paper, a new algorithm which is the result of the combination of cellular learning automata and frog leap algorithm (SFLA) is proposed for optimization in continuous, static environments.At the proposed algorithm, each memeplex of frogs is placed in a cell of cellular learning automata. Learning automata in each cell acts as the brain of memeplex, and will determine the strategy of moti...
متن کامل